Passive protection of mice against Streptococcus pneumoniae challenge by naturally occurring and vaccine-induced human anti-PhtD antibodies
نویسندگان
چکیده
Currently marketed Streptococcus pneumoniae vaccines are based on polysaccharide capsular antigens from the most common strains. Pneumococcal histidine triad protein D (PhtD) is a conserved surface protein that is being evaluated as a candidate for a vaccine with improved serotype coverage. Here, we measured the functional activity of human anti-PhtD antibodies in a passive protection model wherein mice were challenged with a lethal dose of S. pneumoniae by intravenous injection. This functional activity was compared with anti-PhtD antibody concentrations measured by enzyme-linked immunosorbent assay (ELISA) to estimate the 50% protective dose (ED50). Anti-PhtD antibodies affinity purified from pooled normal human sera passively protected mice with an ED50 of 1679 ELISA units/ml (95% confidence interval, 1420-1946). Sera from subjects injected with aluminum-adjuvanted PhtD in a phase I trial had similar activity per unit of antibody (ED50 = 1331 ELISA units/ml [95% confidence interval, 762-2038]). Vaccine-induced activity in the passive protection model was blocked by pre-incubation with recombinant PhtD but not by a control S. pneumoniae antigen (LytB). These results show that human anti-PhtD antibodies, whether naturally acquired or induced by the PhtD candidate vaccine, are functional. This supports the development of the PhtD candidate as part of a broadly protective pneumococcal vaccine.
منابع مشابه
Antibodies to PcpA and PhtD protect mice against Streptococcus pneumoniae by a macrophage- and complement-dependent mechanism
Currently marketed Streptococcus pneumoniae (Spn) vaccines, which contain polysaccharide capsular antigens from the most common Spn serotypes, have substantially reduced pneumococcal disease rates but have limited coverage. A trivalent pneumococcal protein vaccine containing pneumococcal choline-binding protein A (PcpA), pneumococcal histidine triad protein D (PhtD), and detoxified pneumolysin ...
متن کاملA bivalent pneumococcal histidine triad protein D-choline-binding protein A vaccine elicits functional antibodies that passively protect mice from Streptococcus pneumoniae challenge
Vaccines based on conserved pneumococcal proteins are being investigated because serotype coverage by pneumococcal polysaccharide and polysaccharide conjugate vaccines is incomplete and may eventually decrease due to serotype replacement. Here, we examined the functionality of human antibodies induced by a candidate bivalent choline-binding protein A- pneumococcal histidine triad protein D (Pcp...
متن کاملHuman antibodies to PhtD, PcpA, and Ply reduce adherence to human lung epithelial cells and murine nasopharyngeal colonization by Streptococcus pneumoniae.
Streptococcus pneumoniae adherence to human epithelial cells (HECs) is the first step in pathogenesis leading to infections. We sought to determine the role of human antibodies against S. pneumoniae protein vaccine candidates PhtD, PcpA, and Ply in preventing adherence to lung HECs in vitro and mouse nasopharyngeal (NP) colonization in vivo. Human anti-PhtD, -PcpA, and -Ply antibodies were puri...
متن کاملPreclinical evaluation of the Pht proteins as potential cross-protective pneumococcal vaccine antigens.
Current pneumococcal vaccines are composed of capsular polysaccharides (PS) of various serotypes, either as free PS or as protein-PS conjugates. The use of pneumococcus protein antigens that are able to afford protection across the majority of serotypes is envisaged as a relevant alternative and/or complement to the polysaccharides. In this context, based on several studies, the Pht protein fam...
متن کاملImmunization with polyamine transport protein PotD protects mice against systemic infection with Streptococcus pneumoniae.
The human pathogen Streptococcus pneumoniae contains genes for a putative polyamine ABC transporter which are organized in an operon and designated potABCD. Polyamine transport protein D (PotD) is an extracellular protein which binds polyamines and possibly other structurally related molecules. PotD has been shown to contribute to virulence in both a murine sepsis model and a pneumonia model wi...
متن کامل